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J. Phys. A: Math. Gen. 18 (1985) 1515-1531 .  Printed in Great Britain 

Monte Carlo series analysis of irreversible self-avoiding 
walks. I: the indefinitely-growing self-avoiding walk (IGSAW) 

K Kremer'i and J W Lyklema 
Institut fur Festkorperforschung der Kernforschungsanlage Julich, D-5 170 Julich, Postfach 
1913, Federal Republic of Germany 

Received 31 August 1984, in final form 21 December 1984 

Abstract. High-precision Monte Carlo data are used to estimate the exponents which 
govern the asymptotic behaviour of the recently introduced indefinitely-growing self- 
avoiding walk in two dimensions. For this walk the exponent y is by definition equal to 
one. Applying the same methods which are used to extract the exponents from exact series 
enumeration, we give an estimate for the exponent U of 0.567 * 0.003. The leading correc- 
tions to this asymptotic behaviour are also calculated. 

1. Introduction 

Recently a new self-avoiding walk has been introduced (Kremer and Lyklema 1985) 
which is both completely self-avoiding and truly kinetic. This means that although 
the walk grows for ever, no site can be visited more than once. Thus we can look at 
this walk as a self-avoiding walk with the special property that it grows indefinitely 
(truly kinetic) or alternatively as a random walk with the additional constraint that it 
can occupy a particular site only one time (self-avoiding). This so called indefinitely- 
growing self-avoiding walk (IGSAW) is constructed in such a way that it recognises and 
avoids cages, no matter how large, which terminate the walk. Recently other irreversible 
SAW have been introduced but none of them possess both of the above described 
properties. The true SAW (TSAW, Amit et al 1983) is a truly kinetic model but is not 
self-avoiding, whereas the growing self-avoiding walk (GSAW, Hemmer and Hemmer 
1984, Majid et a1 1984, Lyklema and Kremer 1984a, b) is self-avoiding, but is not truly 
kinetic because it can get trapped. Notice that all the above mentioned walks are 
irreversible except the usual SAW. This irreversibility shows up in the one-step transition 
probabilities, e.g. these probabilities can differ if we look along the chain in the two 
different directions. 

In this paper we present a detailed analysis of high-precision Monte Carlo data 
for IGSAW on a square lattice up to a length of N = 100 steps. To study the asymptotic 
behaviour of the mean square end-to-end distance ( R 2 (  N ) )  and the next higher moment 
(R4(N) )  we apply the same techniques as we have previously used in the exact- 
enumeration study of this walk. In addition we have also calculated the mean square 
radius of gyration ( R & ( N ) )  and the next moment ( R L ( N ) ) .  The leading asymptotic 
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behaviour of these quantities is described by a power law with an exponent Y :  

( R 2 ( N ) ) c c ( R i ( N ) ) c c  N’”. (1) 

Because of the high accuracy of our data it is also possible to study the corrections 
to scaling. In this way we have extended our earlier exact-enumeration analysis (N,,, = 
2 2 )  using the Monte Carlo technique to a regime where the assumption of the asymptotic 
behaviour of ( R 2 (  N ) )  is much more reliable. Also from ( R i (  N ) )  we can now expect 
to obtain an accurate result. 

The paper is organised as follows. In the next section we give a definition of the 
IGSAW and explain the basic properties of the model in more detail than in the preceding 
letter (Kremer and Lyklema 1985). In § 3 we explain the Monte Carlo simulation, in 
particular the decision procedures for the construction of the walk. The numerical 
results are given in § 4 and the conclusions and a summary in § 5. 

2. The IGSAW: the model and its basic properties 

To define the IGSAW we have to give the one-step transition probabilities which 
completely describe the walk. We describe the construction procedure of the walk on 
the square lattice. The extension to other two-dimensional lattices is straightforward 
and will be briefly explained later on (see also figure 3( b) ) .  At step one we have to 
choose between qo = 4 directions, in which case the one-step probability p i  equals 1 / qo. 
For the next step we have trivially p2= l / q  = l / ( q o -  1)  as for the usual SAW, which is 
in fact defined by this transition probability for all steps. The SAW is then terminated 
if it tries to violate the self-avoiding condition. 

To define the transition probability for the IGSAW we first count how many of the 
nearest-neighbour sites have not been visited before. Let ni S q be this number at step 
i. So far we only have a local knowledge about the surroundings. This is clearly not 
enough to prevent the walker from entering cages which cause termination at some 
later step. In order to avoid such cages we need additional global knowledge of the 
conformational structure of the chain. This information is given by the winding number 
Wi at step i 

I 

w, = w,. 
j = i  

This number is the sum over all angles w, where j runs over all preceding steps. The 
wj are counted as -1 for a clockwise angle of 90” between step j and step ( j -  l) ,  +1 
for a counterclockwise angle and 0 when the walk proceeds straight ahead ( wo and w 1  
are equal to zero). For different two-dimensional lattices we obviously need a slight 
modification of this definition. This winding number W, defines what is ‘inside’ and 
‘outside’ when a cage can be entered. To find out if a cage is present we have to check 
if one of the nearest neighbours or one of the next-nearest neighbours, which form a 
half circle as drawn in figure ] ( a )  (encircled sites), has already been visited. If this 
were the case, the walk would consequently enter a cage; to avoid this, the site is 
disregarded as a possible jump site. The number of jump sites is at least one but less 
than or equal to n,. The one-step transition probability can thus be defined as 

p ,  = l/number of jump sites. (3)  
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P[t f ) )  = o  P ( t r ) ) t O  

Figure 1. (PI) A simple example of a short IGSAW, which already displays the property of 
avoiding cages. ( b )  This configuration does not fulfil the IGSAW conditions and therefore 
P ( { r } ) = O ;  ( c )  this walk is a short IGSAW with P ( { r ' } ) # O .  These simple configurations 
show the importance of irreversibility. 

With this definition the IGSAW is completely defined. The jump sites are defined in 
such a way that the self-avoiding condition is fulfilled and no termination can occur. 
This can be done because the winding number Wi contains the relevant history of the 
walk and always recognises what is 'outside' for a particular configuration. Note that 
this information comes from the local analysis of the surroundings of the end of the 
walk. From this description it should be clear that a similar procedure for a three- 
dimensional lattice is much more complicated and unfortunately a practical method 
has not yet been found. 

A typical example of an IGSAW is shown in figure 2. This computer-generated walk 
of length N = 100 builds large cages, suggesting a considerable excluded volume effect. 
Also the irreversibility can be seen from this figure, namely in those points where the 

Figure 2. Typical example of a computer generated IGSAW of length N = 100. The dashed 
circles give the positions where the winding number analysis is relevant for the survival 
of the walk. If the first bond were to be the dotted one ( - - -O),  which would change the 
probability of the whole walk by a factor of 3/2, the inverse direction would no longer be 
an IGSAW and would therefore be forbidden (see also figure I ( b ) ) .  
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chain touches itself. The open circles in this figure denote the sites where the walk 
could have travelled into a cage. At these positions the winding number defines the 
outward direction as one can easily check by performing the sum in equation (2) as 
given in figure 2. For the IGSAW the irreversibility, which is shown in figure 2, is a 
much stronger constraint than for the GSAW (Hemmer and  Hemmer 1984, Majid et a1 
1984, Lyklema and Kremer 1984a, b). For d = 2 the GSAW loses its irreversibility on 
the honeycomb lattice (Klein 1984). This cannot occur for the IGSAW. Figures l ( b )  
and l ( c )  show the most simple examples which illustrate this and  also define the 
'active' end of the walk. Figure l ( c )  shows an  IGSAW configuration with probability 
P ( { r } )  =a($)'( ;) '  while the configuration in figure 1 ( b )  is not an  IGSAW and therefore 
P = 0. For d = 2 it is always possible for N + 00 to find the origin of the walk. More 
precisely, as soon as the end site N and a previous site i Z 0  build a cage, which 
includes site number 0 in its interior, the inverse configuration is not an  IGSAW and is 
therefore forbidden. The probability that this occurs very rapidly approaches 1 with 
increasing N. 

From this information, the behaviour of the partition function Z( N) can easily be 
deduced (Kremer and  Lyklema 1985). Using the one-step probabilities of equation 
(3) the probability P ( { r } N )  of a configuration { r } N  of a N-step IGSAW is simply 
P ( { r } )  = ll;, p, .  Because the walker never stops, which means that conservation of 
probability holds, one gets for the partition function 

With the usual expression (for SAW),  Z (  N)cc ( q e E / q , J N N y - '  (de  Gennes 1979) the 
fixed point is equal to one (equation (6)) and 

y =  1. ( 5 )  

This gives for the generation function G(x)  

x-x: 

G ( x ) = C Z ( N ) x N  0: ( X - X , ) - ~ .  (6) 
N 

Because Z( N) = 1 one directly finds x, = 1 and  y = 1 (equation ( 5 ) ) .  So far this is the 
only known analytical result for this walk. It shows that this model is a truly kinetic 
SAW. For a discussion of the partition function of such kinetic systems see, for example, 
Nakanishi and  Family (1984) and Stella et a1 (1984). Before turning to the Monte 
Carlo procedure, we briefly want to explain a few other properties of the IGSAW. In 
comparison with the usual SAW we see that the possible configurations of the IGSAW 

form a subset of those of the SAW (Kremer and  Lyklema 1985). Obviously all the SAW 

trajectories which cannot form part of an  infinitely long chain are excluded configur- 
ations. As the asymptotic behaviour of the walks is given by the infinite trajectories, 
at  a first glance it could be expected that both walks have the same asymptotic exponent 
v. However, the IGSAW always finds its way out of dense situations and  according to 
equation (3) such configurations have a higher probability than more expanded ones. 
Taking this into account it is clear that, as found from the exact enumeration (Kremer 
and Lyklema 1985) 
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3. The Monte Carlo procedure 

The chains are generated by the well known static-sampling procedure (see, for example, 
Kremer et a1 (1982) and  references therein). For each new step the possible new 
directions are first selected. Then the new step ( i  + 1) is taken from these directions 
at random. On the square lattice there is a choice of at least one and at most three 
possibilities. These possibilities are calculated as follows. First the three nearest- 
neighbour sites are checked to see if one has been visited before. Secondly it must be 
determined whether one of the free sites leads into a cage. To find out if such a cage 
can be formed in the next step, the two next-nearest-neighbour sites in the forward 
direction must also be checked to see if they have been visited before (see figure 1). 
If one of these sites or the nearest-neighbour site in between them is occupied already 
at the kth step we have to calculate the difference winding number A W 

A W =  W,- Wk. (8) 
If A W is positive no step in a counterclockwise loop is allowed and, vice versa, no 
step in a clockwise loop is allowed when A W is negative. The possibility A W = 0 does 
not occur because a cage can then not exist. In figure 3 we have illustrated the above 
discussion with some examples including simple examples for the honeycomb and the 
triangular lattice. Figure 4 again explains the algorithm for a configuration containing 

Figure 3. ( a )  The typical topological situations which occur during the walk construction. 
The encircled lattice sites give the positions which have to be analysed for the square 
lattice. Note that for the IGSAW two of these sites are next-nearest neighbours. ( b )  The 
relevant sites are encircled for the construction of an IGSAW on a honeycomb lattice and 
on the triangular lattice. Note that for the triangular lattice additional winding variables 
must be introduced to the = I  and 0 of the square lattice. 
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k ’1 

Figure 4. Example of a configuration which displays the most complicated topology which 
can occur. This part  of the walk consists of two nested loops with opposite winding 
directions. The encircled sites again give the relevant sites for the construction algorithm. 
The difference in the winding number of step i, a n d  i, (U , ;  - U , ,  = -2)  defines ‘outward’ 
by proceeding straight forward o r  by turning through a t90” angle. The difference between 
step i2 arid i I  ( w , , - w , , = ~ Z )  ( the inner loop)  defines ‘outward’ by proceeding straight 
forward or by turning through a -90” angle. Both restrictions then allow the walk to go  
only straight ahead.  

nested loops. Such configurations are topologically the most complicated ones which 
can occur. To provide a different perspective on the above description, we study 
oriented curves in two dimensions. Non-crossing closed lines always enclose an  angle 
of 1277. The sign of the angle and the orientation of the last bond define the inside 
and outside of the loop. On the square lattice we measure the angles in units of ~ / 2 .  
The algorithm thus has to check whether a step to a non-occupied ( N N )  site can build 
a loop via a N N  contact and whether this new step points into this loop. This is given 
by the orientation of the last bond and the difference of the winding numbers at the 
contact points. If it points inside, the step is forbidden; otherwise it is allowed. In 
this way we have generated up  to 4 x IO’ chains of length N = 100. 

From these configurations we have then calculated the mean square end-to-end 
distance 

(R’ (  N ) )  = ( ( r N  - ro)2) (9) 

( R 4 ( N ) )  = ( ( R 2 ( N ) I 2 ) .  (10) 

and the fourth moment 

Here rN and r, are the positions of the N t h  monomer and the zeroth monomer 
respectively. We have also calculated the mean square radius of gyration and its fourth 
moment for even values of N only (to save computer time) 
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with 

f r,. rCM = - 1 
N + 1  ( = o  

In addition we have calculated the mean displacement (( rN - ro) )  in order to check 
the quality of the data. Ideally this quantity should be zero. Using this deviation we 
have typically found a discrepancy of O.O1°/o in ( R 2 (  N ) ) ‘ ’ 2 ,  showing the high accuracy 
of the data. The calculations have been performed on an  IBM3081 in extended 
precision (real *16). The calculation took about 30 h to complete-roughly the same 
amount of time we took for the exact enumeration ( N S 2 2 ,  Kremer and Lyklema 
1985). In this latter calculation we have not included the very time-consuming radius 
of gyration calculation. Thus the advantage of a Monte Carlo calculation comes from 
the possibility of simulating much longer chains for which one can also calculate 
( R & (  N ) ) .  Combining our exact enumeration results and the high-precision Monte 
Carlo data enables us to give an accurate estimate of the asymptotic behaviour of 
( R 2 ( N ) )  and ( R & ( N ) ) .  

4. Extrapolation methods and results 

To extract results from our data we have used two standard methods from series 
analysis (see, for example, Djordjevic er a1 1983). There exist of course more sophisti- 
cated methods like a Pad6 analysis, but data of much higher accuracy are then required 
(Pearce 1978). Also there seems to be no need to go beyond simple ratio methods 
because our results are as good as one can expect from Monte Carlo data. 

To analyse our data we assume the following asymptotic behaviour for the mean 
square end-to-end distance and the mean square radius of gyration (for a more general 
discussion of corrections to scaling see, for example, Privman 1984): 

(R’( N ) )  ARN”’(  1 + B R N - ~ ~  + CRN-.’ + . . .) 
( R k (  N ) )  = AGN2’(  1 t L3, N - A G +  CGN-l  + . . .). 

(14) 

(15) 

In  these expressions U is the critical exponent we are looking for. In brackets, the 
possible leading corrections to scaling are described by a correction term proportional 
to N-” and an  analytical correction proportional to N-I .  An important question to 
be settled before one can give a reliable estimate for v is whether A is larger than one. 
This can be seen from the expressions for the effective exponents v ( N )  which are 
defined in the two methods A and B as follows: 

U?(  N )  = - 

and 

= U - ~ A B N - ~ - ~ C N - ‘ +  . . . .  (17) 
From these expressions we can estimate v by plotting the calculated v ( N )  against 
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I /  N. This asymptotically results in a straight line if A > 1 .  Only then can we extrapolate 
v ( N )  to get a reliable estimate for v. In this way we have analysed ( R * ( N ) )  and 
(R4( N)) for i = 1 , 2  and 4 and (RL( N)) and  ( R k (  N)) for i = 2 and 4. In figure 5 the 
results obtained from ( R 2 (  N)) are plotted for method B and i = 2 and 4. Equation 
(17) already shows the advantages of method B. Here the corrections which describe 
the behaviour of vB(N) clearly have a simpler structure than for method A. This is 
also of importance for estimating the corrections to the leading behaviour. The data 
for v( N) already show a linear behaviour with 1/  N for N larger than 16, indicating 
that the assumption A >  1 is correct. This supports our previous results from exact 
enumerations (Kremer and  Lyklema 1985) and  gives a first estimate of v = 0.567. 

To analyse this in more detail we have studied the difference 

D( N) = v,"( N) - v,"( N - 2 )  

0 5 5 ' 5 - - 1  0 0 05 0 1  

0 55c---- 
0 0 05 0 1  

1 I N  

Figure 5. Plot of v ( N )  using equation (17) for ( R 2 ( N ) )  (lower curve) and using the 
analogous expression for ( R 4 ( N ) )  (upper curve) against l / N  for 9 8 2  N z  10 and ( a )  I = 2  
and ( b )  i = 4. Note that for N C 20 no distinction can be made between the MC data and 
the enumeration results. In order to have a realistic impression of the errors no averaging 
over various data points has been made. 
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This result is obtained by substituting equation (17) into the left-hand side of equation 
(18). The analysis of D ( N )  versus N - 2  for the enumeration data clearly shows a 
tendency to linear behaviour for N 2 14. Note that for this analysis it is not necessary 
to know the value of v. The data for D ( N ) N *  and ln(D(N)) / ln  N are given in table 
1. There we also present the raw MC and enumeration data. From the enumeration 
data we conclude that asymptotically D ( N )  is given by 

D( N) 1.05 W 2 .  (19) 

Table 1. Results for D( N )  = U( N )  - U( N - 2 )  from the enumerations for U( N )  calculated 
using equation (18). 

N $ l n ( D ( N ) ) / l n  N D ( N ) N ~  

I2 1.015 
14 1.003 
16 0.999 
18 0.997 
20 0.996 

0.927 
0.984 
1.004 
1.016 
1.027 

This estimate is nicely consistent with the same analysis of the Monte Carlo data. 
They are, of course not precise enough to improve the accuracy of equation (19). For 
this an accuracy of at least one order of magnitude higher would be needed for the 
MC results. Using this information equation (17) can be rewritten as 

v ( N ) =  v+f ( l . 05  N-I ) .  

We estimate from the enumeration data for v the value 0.57. Because this analysis 
is based on a rather short series ( N  s 22) of which only the last three points suggest 
an asymptotic behaviour it is highly desirable to study much longer series. This can 
only be done using a Monte Carlo technique and combining both results. After the 
foregoing discussion it is not surprising to see that the Monte Carlo data in figure 5 
can be fitted very well by a straight line. For small N the fit is nearly perfect. For 
larger N the scatter increases because it becomes more and more difficult to sample 
all the walks adequately due to the tremendous number of possibilities. For large N 
we have sampled up to 4 X lo7 walks which gives an accuracy of better than 0.02% for 
the mean square displacement (see also table 2). Estimated from the scatter in the 
data this still results in an error of 0.5% per point for such a sensitive quantity as a 
critical exponent. However, due to the large number of points it is possible to give 
an accurate estimate from a two-parameter least-squares fit for v and C assuming 
linear behaviour with 1/N. The values we have found are 

v = 0.567 * 0.003 

c = -1.00*0.10. 

The value of C is checked by fitting v = v( N )  + iC/  N to a zero-slope line in figure 6. 
Note that C is the only fit parameter in this plot. It should be mentioned that C, the 
correction to scaling amplitude, obtained by the MC data is in good agreement with 
the enumeration value (equation (19), C = - 1.05). The errors here are estimated from 
the results obtained by fitting a varying number of points from subintervals of different 
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Table 2. Enumeration results for N S 22 for the IGSAW on the square lattice. N gives the 
number of steps, while Conf gives the number of different configurations. The partition 
function Z ( N )  is always equal to I .  (R ' )  and (R4) are calculated using equations (9)  and 
(10). 

2 
3 
4 
5 
6 
7 
8 
9 

I O  
I I  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

3 
9 

25 
71 

195 
54 I 

1475 
4 041 

10965 
29811 
80 589 

218021 
587 635 

1584243 
4 259 937 

1 1  454 841 
30 742 703 
82 498 935 

221 065 461 
592 272 339 

1584987 143 

0.100 000 OOE +01 
0.100 000 OOE + 01 
0.000 000 OOE + 0 I 
0. IO0 000 OOE + 0 1 
0.100 000 OOE + 01 
0.100 000 OOE + 01 
0.100 000 OOE + 01 
0. I00 000 OOE + 01 
0.100 000 OOE +01 
0.100 000 OOE+ 01 
0.100 000 OOE+ 01 
0.100 000 OOE + 01 
0.100000OOE+01 
0.100 000 OOE + 01 
0.100 000 OOE + 01 
0.100 000 OOE + 01 
0.100 000 OOE + 01 
0.100 000 OOE +01 
0.100 000 OOE + 0 I 
0.100 000 00E+01 
0.100 000 OOE + 01 

0.26666667E+OI 
0.455 555 56E+01 
0.674074 07E+01 
0.900 000 OOE + 01 
O.l1427984E+02 
0.138779 15E+02 
0.16450846E+02 
0.190 343 70E+02 
0.21705647E+02 
0.243 887 75E + 02 
0.271 383 80E+02 
0.298991 6 7 8 + 0 2  
0.327 147 88E + 02 
0.355 397 45E+02 
0.384 11938E+02 
0.412926 72E+02 
0.442 144 68E+02  
0.47 1 444 73E + 02 
0.501 108 50E+02 
0.530 850 16E + 02 
0.560 919 46E +02 

0.800 000 OOE + 01 
0.258 888 89E + 02 
0.582 222 22E+02 
0. I07 864 20E + 03 
0. I77 358 02E +03 
0.268 358 02E + 03 
0.382 738 OOE f 03 
0.521 606 16E+03  
0.686 376 24E+ 03 
0.877 943 70E+03 
0.109741 77E+04 
0.134 554 41 € + 0 4  
0.162 325 8 2 € + 0 4  
0.193 118OOE+04 
0.227 012 79E+04 
0.264 064 72E + 04 
0.304 345 1 I E +  04 
0.347 903 92E + 04 
0.394 804 69E + 04 
0.445 093 03E + 04 
0.498 827 01E+04 

0.266 666 67E + 02 
0.164555 56E+03 
0.579851 85E+03 
0.151 12222E+04 
0.326 625 5 I E + 04 
0.62 1 242 94E + 04 
0.10773096E+05 
0.174 17662E+05 
0.26661495€+05 
0.390 570 96E + 05 
0.551 955 76E+05 
0.756 990 70E + 05 
0.101 223 25E+06 
0.132 450 36E + 06 
0.1 70 092 36E + 06 
0.214 884 88E + 06 
0.267 589 86E + 06 
0.328 991 05E+06  
0.399 895 89E + 06 
0.481 131 85E+06  
0.573 548 37E + 06 

1 I 
0.54L - , _ _ _ _  

0 0.05 01 
! ~ 

1 I N  

Figure 6. Plot of v ( N ) + i C N - '  against I/N. u ( N )  is determined from ( R 2 ( N ) )  and i = 2  
using equation (17). This plot is the most sensitive check for determining C, the amplitude 
of the leading correction to scaling. The data give C = I .OO * 0. I O  in excellent agreement 
with the earlier enumeration results. Note the strongly enhanced scale for v+fCN-' 
compared to figure 5. 

lengths. Here we have analysed v y ( N )  only, but the same results are obtained if we 
study vB( N )  for i Z 2, I/?( N )  or if we study the fourth moments as can be seen from 
the figures. For the radius of gyration the situation is more complicated. As already 
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can be seen from its definition (equations ( 1  1) and  (13)) the mean square radius of 
gyration (R&(  N ) )  for a fixed value of N is governed by much smaller internal distances 
than the corresponding distance from ( R * ( N ) ) .  From this, one can expect that the 
asymptotic behaviour for ( R L ( N ) )  will occur for larger N values (see also table 3). 
Also the values of the correction terms are not necessarily the same. To study this we 
have again analysed v:( N )  and plotted it against 1/ N now for RL. This gives a very 
smooth curve which extrapolates to a value of -0.573 for v, which is not consistent 
with the result from ( R 2 (  N ) ) .  However, the data do  not seem to lie on a straight line; 

Table 3. MC results for 1 0 s  N s 100. The column headed ‘walks’ gives the number of 
walks which are sampled. (R’) and (R4) are again calculated using equations (9) and ( I O )  
while (R:) and ( R L )  are given by equations ( I  l)-(l3). Note that for ( R E )  and (R:) a 
smaller number of walks is sampled. 

N Walks ( R ?  (R? Walks ( R 3  (RL) 

I O  7360000 
I I  7360000 
12 7360000 
13 7 360000 
14 7360000 
15 7360000 
16 7 360000 
17 7360000 
18 7360000 
19 7 360000 
20 7360000 
21 7360000 
22 7360000 
23 7360000 
24 7360000 
25 7360000 
26 7360000 
27 7360000 
28 7360000 
29 7360000 
30 7360000 
31 7360000 
32 7360000 
33 7360000 
34 7360000 
35 7360000 
36 7360000 
37 7360000 
38 7360000 
39 7360000 
40 16 500000 
41 16500000 
42 16 500000 
43 16500000 
44 16 500000 
45 16 500000 
46 16 500000 
47 16 500000 

21.6899 
24.3725 
27.1244 
29.8852 
32.7036 
35.5251 
38.3942 
41.275 3 
44.1995 
47.1315 
50.0984 
53.0681 
56.0692 
59.0779 
62. I 152 
65.1697 
68.2468 
7 1.3375 
74.4475 
77.5573 
80.7026 
83.8528 
87.0304 
90.2 124 
93.4143 
96.6224 
99.8500 
103.0775 
106.3260 
109.5862 
1 12.8784 
116.1535 
119.4457 
122.7408 
126.0484 
129.3633 
132.6894 
136.0258 

685.4719 
8 7 6.8 9 3 2 

I 096.2213 
I 344.0491 
I 621.8046 
1929.2320 
2 267.67 59 
2 638.1 I96 
3 040.9494 
3 476.5542 
3 956.2170 
4 447.3019 
4 983.5579 
5 554.5771 
6 160.7440 
6 803.5813 
7 482.7275 
8 199.5117 
8 952.701 1 
9 740.4986 

I O  569.6473 
1 1435.6710 
12 341.7653 
13 287.7069 
14 273.5492 
I5 299.9590 
16 265.8726 
I7 47 1.0965 
I8 6 16.9040 
I9 803.8816 
21 040.9220 
22 308.9588 
23 6 18.6796 
24 969.5525 
26 362.5979 
27 797.3539 
29 274.6927 
30 798.2856 

1150000 

l is0000 

I I50 000 

1 I50 000 

1 I50 000 

I750 000 

1750 000 

I750 000 

I750 000 

I750 000 

2390 000 

2390 000 

2390 000 

239 ,000 

2390 000 

3080 000 

3080 000 

3080 000 

3080 000 

3.4009 

4.2503 

5.1320 

6.040 5 

6.971 6 

7.9228 

8.8906 

9.8752 

10.8751 

1 1.8889 

12.91 58 

13.9543 

15.0038 

16.0636 

17.1336 

18.2 I55 

19.3043 

20.40 I8 

21.5068 

12.945 6 

20.3886 

29.9288 

41.7032 

55.8239 

72.3976 

91.5 I54 

113.2791 

137.7760 

165.0808 

195.2535 

228.3783 

264.5 I76 

303.7029 

346.021 8 

391.6194 

440.3992 

492.4802 

547.8797 
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Table 3. (continued) 

48 16 500000 
49 16 500000 
50 16 500000 
51 16500000 
52 16 500000 
53 16 500000 
54 16 500000 
55 16 500000 
56 16500000 
57 16500000 
58 16500000 
59 16 500000 
60 27300000 
61 27 300000 
62 27300000 
63 27300000 
64 27300000 
65 27300000 
66 27300000 
67 27300000 
68 27300000 
69 27 300000 
70 27300000 
71 27300000 
72 27300000 
73 27300000 
74 27300000 
75 27300000 
76 27300000 
77 27300000 
78 27300000 
79 27300000 
80 40500000 
81 40 500000 
82 40500000 
83 40500000 
84 40500000 
85 40500000 
86 40500000 
87 40500000 
88 40500000 
89 40500000 
90 40500000 
91 40500000 
92 40500000 
93 40500000 
94 ~ 40 500000 
95 40500000 
96 40500000 
97 40500000 
98 40500000 
99 40500000 

100 40500000 

139.3855 
142.7449 
146.1201 
149.4925 
152.8794 
156,2803 
159.6901 
163.1020 
166 5203 
169.9482 
173.3893 
176.8306 
180.2567 
183.7196 
187.1935 
190.6677 
194. I529 
197.6481 
201.1 506 
204.6536 
208. I734 
21 1.6888 
2 I5:2158 
2 18.7428 
222.2857 
225.8344 
229.3924 
232.9577 
236.53 I 1  
240. I038 
243.6858 
247.2790 
250.8533 
254.4559 
258.06 I8 
26 I .6728 
265.2936 
268.8159 
272.5500 
276.1869 
279.8284 
283.4721 
287.1304 
290.7905 
294.4546 
298.1200 
301.7974 
305.4788 
309. I676 
312.8621 
316.5622 
320.2693 
323.9847 

32 370.691 I 
33 982.7739 
35 638.4737 
37 335.8932 
39 080.4534 
40 872 6664 
42 709.3020 
44 589.9722 
46 5 12.4003 
48 48 1.0749 
50497.8741 
52 560.5694 
54 659.9988 
56817.7527 
59 019.4392 
61 267.6593 
63 562.3700 
65 908.6043 
68 299.3869 
70 737.4001 
73 228.0447 
75 761.3580 
78 344.1712 
80 973.5680 
83 65 1.3542 
86 380.25 15 
89 159.9508 
91 992.4273 
94 87 1.8744 
97 796.4868 

IO0 77 1.7922 
103 805.0564 
106 86 1.3683 
109 990.8819 
I13 168.1877 
1 I6 393.9414 
119 673.8022 
123001.5471 
I26 384. I045 
129 820.5543 
133 304.8293 
13 837.3381 
140 430.9064 
I44 074.6794 
147 764.5360 
151 505.0363 
155 304.8957 
159 159.6228 
163 068.0948 
167 03 1.2396 
I7  1 045.6748 
175 119.9084 
179 241.2046 

3080 000 

3780 000 

3780 000 

3780 000 

3780 000 

3780000 

4630 000 

4630 000 

4630 000 

4630 000 

4630 000 

5620 000 

5620 000 

5620 000 

5620 000 

5620 000 

6830 000 

6830 000 

6830 000 

6830 000 

6830 000 

8420 000 

8420 000 

8420 000 

8420 000 

8420 000 

8420 000 

22.6192 

23.7390 

24.8654 

25.9988 

27.1384 

28.2844 

29.4390 

30.5973 

3 1.7616 

32.9317 

34.1070 

35.2886 

36.4741 

37.6645 

38.8598 

40.0598 

41.2618 

42.4710 

43.6849 

44.9035 

46. I263 

47.3503 

48.5809 

49.8 I53 

51.0535 

52.2955 

53.5414 

606.6520 

668.91 7 1 

734.5599 

803.7291 

876.4345 

952.7276 

1032.7669 

I 1  16.3464 

1203.6513 

1294.6915 

1389.47 13 

1488.1840 

1590.5924 

1696.8603 

1807.0182 

1921. IO34 

2038.8756 

2 160.9328 

2287.0405 

241 7.2362 

2551.5286 

2689.5755 

2832.0498 

2978.6699 

3 129.4629 

3284.4527 

3443.6847 
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they still show a slightly increasing curvature. There may be two reasons for this; 
either the data are not yet in the asymptotic region or the leading correction to scaling 
is not proportional to 1/N. To analyse this in more detail we rewrite equation (17) 
for (Rz j (  N ) )  as 

h( Y:( N )  - Vest) = 1Il(-&&) - A G  In N. (22) 

Here we have assumed that for the radius of gyration we have A G  < 1 and BG < 0, an 
assumption which is suggested by the N dependence of the data. For vest we take the 
value 0.567 from the ( R 2 ( N ) )  analysis. A plot of equation (22) is given in figure 7. 
From the resulting straight line we estimate 

A G  = 0.64 * 0.10. (23) 

..0. I ...... ... ... 

Figure 7. Plot of In( v ( N )  - v,,,) against In N using equation ( 2 2 )  for ( R L )  and i = 2 to 
determine the leading correction to scaling. For ves, we took the asymptotic v value as 
deduced from the ( R 2 ( N ) )  d?ta, v = 0.567. The data nicely fit a straight line with a slope 
which gives A = 0.64. Note that the scatter of the data determines the errors especially for 
the data at N = 90,80,70. . . because there v( N )  connects statistically nearly-independent 
samples. 

This is in remarkable contrast with the result for ( R 2 ( N ) )  where we found A R  = 1. To 
estimate v from the radius of gyration data we have to plot v,”( N )  against (see 
figure 8). This indeed results in a straight line for N 3 35 which extrapolates to the 
expected value of 0.567. From the slope of this figure we then calculate 

B,= -0.92*0.10. (24) 
This value is confirmed by a one-parameter fit of D( N )  against N-(’+*). 

values for the exponent and the correction terms we can estimate this from 
We now still have to calculate the prefactors AR and A,. With the above given 
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Figure 8. Plot of v ( N )  against 1 /No- for ( R & ( N ) )  (lower curve) and ( R & ( N ) )  (upper 
curve) for 98 3 N 3 10. v( N )  is calculated using equation (17) with I = 2. 

This results in 

AR = 1.766 

A, = 0.303 

and ( R & ( N ) ) / ( R ’ ( N ) )  = AG/AR = 0.1652 for N .= 100 where AR, A, and AG/AR still 
show a very small increase, which could change the last one or two digits a little. This 
amplitude ratio is surprisingly close to that of the usual random walk value of A, if not 
equal when the ratio is extrapolated to N + cc. Because we also have by construction 
y = 1, this may suggest a very late asymptotic behaviour resulting also in a random 
walk value off for U. However, our data are completely inconsistent with a logarithmic 
correction. This is illustrated in figure 9. Details are given in the figure caption. Also 
from the fact that for N = 100 the ratio is already practically whereas U( N )  does not 
show any sign of bending down to U = $, we conclude that we have assumed the correct 
asymptotic behaviour (equation (14)). 

For the asymptotic ratios of the moments we find 

Thus we find 

( R 2 (  N)) / (R4(  N ) ) ” 2  = 0.77 

(R&(N) ) / (R; (N) )”’  =0.91. 

for the asymptotic value of the variance 

This non-vanishing variance illustrates the need for high-precision calculations of these 
relatively short chains as opposed to much less accurate simulations for very long chains. 

The last quantity which we have studied is the winding angle of the walk (Fisher 
et a1 1984). We define B ( N )  as the winding number in the units which we used for 
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0 . S O i . .  , . , , , , , ! .  , , . , , , I 
0 0.2 0.4 

l l l n lN1 

Figure9. Plot of v( N )  against I / ln  N for (R2( N ) )  and i = 2. Here v( N)  again is determined 
by equation (17). Assuming a behaviour of (R2( N ) )  = AN2”(ln “ N  +.  . .), v( N )  should be 
proportional to l / ln  N. The data are clearly inconsistent with such an assumption. The 
main purpose of this figure is to test whether the data can bend down to v = 1/2 via a 
logarithmic correction. The slope of the data points in the opposite direction. In order to 
reach v =  1/2 the data must behave very strangely, with at least one inflection point 

the construction of the walk, For the asymptotic behaviour of (e2( N ) )  we have assumed 

( e2( N ) )  - (In N ) ~ .  

p = 0.9 i 0.1. 

(29) 

(30) 

From our analysis we find 

This must be compared with 2.00 which one expects to hold for the RW and 1.22 which 
is found for the SAW. It is also argued, however, that this number should be one. We 
find the same behaviour for the ratio (e4(N))/(e2(N))2. For the RW one expects to 
find the value 3. For the SAW the value approaches 3 from above, whereas for the 
IGSAW we always find that (04(N))/(82(N))2<3 but increasing with N. A plot 
of ( 04( A’))/( e2( N))’ against 1/ N shows a distinct curvature even for N = 100. 
We estimate 3 b ( 04( N ) ) / (  e’( N ) ) 2  B 2.97, but within the error bars the ratio can 
approach 3.  

5. Conclusions 

We have given a detailed analysis of the properties of the IGSAW, a truly kinetic and 
completely self-avoiding walk. By the use of high-precision Monte Carlo data we 
extended our previous series analysis of exact enumeration data ( N  22) (Kremer 
and Lyklema 1985) up to N = 100. Because of the high accuracy of the data (see the 
tables) we are able to apply the methods used in series analysis to analyse the data. 
Note that the plotted results are neuer smoothed by any kind of averaging over various 
points. Therefore the scatter of the data give a realistic estimate of the errors, without 
additional sources of errors which depend on how one analyses the data. The reason 
for simulating many, relatively short chains instead of sampling very long, but very 
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few chains can be deduced from equation (28). The fluctuation of (R ' )  and ( R & )  show 
an  asymptotically non-vanishing variance. For ( R 2 (  N ) )  the variance stays at 0.84. 
This means that the width of the distribution function does not decrease! Therefore, 
to get data of high quality which is necessary for the calculation of critical exponents, 
a number of samples are needed which are, for N distinctly larger than 100, beyond 
the present computing possibilities. Therefore we claim that the present method is the 
best way to study such systems without spending an  extraordinary amount of computing 
time. An additional check of the quality of the data is given by a comparison with 
the exact enumeration results (see the tables). They show a perfect coincidence, so 
that the two results in the foregoing figures are completely indistinguishable. 

The corrections to scaling, as determined for ( R2(  N)) and (R&(  N ) ) ,  are much more 
difficult to determine. A first estimate for ( R 2 (  N ) )  comes from the enumeration data. 
The leading N-' correction to scaling for ( R 2 ( N ) )  is excellently confirmed by the 
Monte Carlo results. Of course we cannot distinguish between and N-'.' or a 
combination of such exponents, but we can conclude that the correction to scaling for 
( R2(  N)) is at least for one decade governed by an  N-" behaviour, with x = 1. Because 
y = 1 and also because amplitude ratios are the same as for random walks it could be 
argued that v = 1/2,  and  that there might be logarithmic corrections. In order to have 
such a situation, a very different result from what actually happens would be expected 
(see figure 9). In order to bend down to v = 1/2, figure 9 must have an  inflection point, 
a highly unexpected feature. Our conclusion from the results for (R ' ) ,  ( R4), is that we 
can exclude such a behaviour and therefore our estimated error for v=0.567*0.003 
is reliable. A very interesting point is that the corrections to scaling for ( R & )  are, 
within the chain length we analyse, proportional to N-0.64 instead of N-' as for ( R 2 ) .  
This is because (R;)  is governed by much smaller internal distances. (I?&) is defined 
as the mean square distance of all monomers from the centre of mass and can be 
rewritten (Flory 1969) as the average squared internal distance between all monomers. 
Taking this into account, at least a larger amplitude and possibly a smaller exponent 
for the corrections to scaling can be expected, compared to the ones for (R') .  

Because of the current controversy for the corrections to scaling for the usual SAW 

(see, for example, Privman 1984) i t  is very interesting to check these questions for 
these systems also (Lyklema and Kremer 1985). An open question is the extension of 
this model to three dimensions. It has been suggested by us (Kremer and Lyklema 
1984) that this walk might have an upper critical dimension of three. Because of the 
non-triviality of this problem we have not yet studied this problem in three dimensions. 
Also for an  analytical study of d,  which of course is highly desirable, it is first necessary 
to formulate the problem in three dimensions. The IGSAW is, compared with other 
kinetic growth models .like diffusion-limited aggregation (Witten and Sander 1983), 
a more simple model. An analytical study of the present model might therefore give 
some insight in the difficulties encountered there. A physical realisation of this model 
could be the diffusion-limited growth of a chain on a surface. With the condition that 
the chain cannot relax during the growth process, this polymer should show u p  a 
typical IGSAW configuration. 

Another question is whether there is any connection to the 0 point of real polymers. 
This speculation came up  in connection with the discussion of the GSAW (Majid er a1 
1984, Kremer and Lyklema 1985). However, there is still the question whether such 
irreversible kinetic models can describe equilibrium properties of physical systems. 
The other more striking arguments against a 0 analogy is the behaviour discussed in 
figure l(b),  which for N-, 00 always defines the origin of the walk, in strong contrast 



Monte Carlo analysis of self-avoiding walks 1531 

with the 8 point behaviour of a polymer where there is no preferred end. Also this 
walk may describe the cluster-hull properties (Weinrib and Trugman 1984). Although 
the numerical results for Y given here are in very good agreement with numerical 
results for the cluster hull (Voss 1984) the same arguments concerning the 'origin' of 
the walk for the 8 discussion again show that the IGSAW is topologically different from 
the cluster hull. The cluster hull can be described by a modified IGSAW, which grows 
symmetrically and therefore does not have any distinguished origin. For a ring closing 
version Weinrib and Trugman (1984) showed this for clusters on the triangular lattice. 

To summarise we have presented an  extensive numerical analysis of the recently 
introduced indefinitely-growing self-avoiding walk IGSAW (Kremer and Lyklema 1985). 
The exponent y is equal to I .  For the exponent Y we find from (R') ,  (R4),  ( R i )  and 
( R k )  extrapolations v = 0.567 * 0.003. The leading correction to scaling is proportional 
to N - '  for (R ' )  while it is proportional to for (RL) :  

R ~ ( N )  = 1.77 N ~ ~ ~ ~ ~ ~ ( I  - 1.00 N - ' + .  . .) 
RL( N )  = 0.30 N2"0 567( 1-0.92 . .). 

(31) 

Besides these exponent the corresponding amplitudes and  amplitude ratios are deter- 
mined, including the winding angle ratios. 
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