Monte Carlo series analysis of irreversible self-avoiding walks. I. The indefinitely-growing selfavoiding walk (IGSAW)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 181515
(http://iopscience.iop.org/0305-4470/18/9/031)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:55

Please note that terms and conditions apply.

# Monte Carlo series analysis of irreversible self-avoiding walks. I: the indefinitely-growing self-avoiding walk (IGSAW) 

K Kremer $\dagger$ and J W Lyklema<br>Institut für Festkörperforschung der Kernforschungsanlage Jülich, D-5170 Jülich, Postfach 1913, Federal Republic of Germany

Received 31 August 1984, in final form 21 December 1984


#### Abstract

High-precision Monte Carlo data are used to estimate the exponents which govern the asymptotic behaviour of the recently introduced indefinitely-growing selfavoiding walk in two dimensions. For this walk the exponent $\gamma$ is by definition equal to one. Applying the same methods which are used to extract the exponents from exact series enumeration, we give an estimate for the exponent $\nu$ of $0.567 \pm 0.003$. The leading corrections to this asymptotic behaviour are also calculated.


## 1. Introduction

Recently a new self-avoiding walk has been introduced (Kremer and Lyklema 1985) which is both completely self-avoiding and truly kinetic. This means that although the walk grows for ever, no site can be visited more than once. Thus we can look at this walk as a self-avoiding walk with the special property that it grows indefinitely (truly kinetic) or alternatively as a random walk with the additional constraint that it can occupy a particular site only one time (self-avoiding). This so called indefinitelygrowing self-avoiding walk (IGSAW) is constructed in such a way that it recognises and avoids cages, no matter how large, which terminate the walk. Recently other irreversible saw have been introduced but none of them possess both of the above described properties. The true saw (TSAW, Amit et al 1983) is a truly kinetic model but is not self-avoiding, whereas the growing self-avoiding walk (GSAw, Hemmer and Hemmer 1984, Majid et al 1984, Lyklema and Kremer 1984a, b) is self-avoiding, but is not truly kinetic because it can get trapped. Notice that all the above mentioned walks are irreversible except the usual sAw. This irreversibility shows up in the one-step transition probabilities, e.g. these probabilities can differ if we look along the chain in the two different directions.

In this paper we present a detailed analysis of high-precision Monte Carlo data for IGSAW on a square lattice up to a length of $N=100$ steps. To study the asymptotic behaviour of the mean square end-to-end distance $\left\langle R^{2}(N)\right\rangle$ and the next higher moment $\left\langle R^{4}(N)\right\rangle$ we apply the same techniques as we have previously used in the exactenumeration study of this walk. In addition we have also calculated the mean square radius of gyration $\left\langle R_{\mathrm{G}}^{2}(N)\right\rangle$ and the next moment $\left\langle R_{\mathrm{G}}^{4}(N)\right\rangle$. The leading asymptotic

[^0]behaviour of these quantities is described by a power law with an exponent $\nu$ :
\[

$$
\begin{equation*}
\left\langle R^{2}(N)\right\rangle \propto\left\langle R_{\mathrm{G}}^{2}(N)\right\rangle \propto N^{2 \nu} . \tag{1}
\end{equation*}
$$

\]

Because of the high accuracy of our data it is also possible to study the corrections to scaling. In this way we have extended our earlier exact-enumeration analysis ( $N_{\max }=$ 22) using the Monte Carlo technique to a regime where the assumption of the asymptotic behaviour of $\left\langle R^{2}(N)\right\rangle$ is much more reliable. Also from $\left\langle R_{\mathrm{G}}^{2}(N)\right\rangle$ we can now expect to obtain an accurate result.

The paper is organised as follows. In the next section we give a definition of the iGSAW and explain the basic properties of the model in more detail than in the preceding letter (Kremer and Lyklema 1985). In § 3 we explain the Monte Carlo simulation, in particular the decision procedures for the construction of the walk. The numerical results are given in $\S 4$ and the conclusions and a summary in $\S 5$.

## 2. The igSaw: the model and its basic properties

To define the IGSaw we have to give the one-step transition probabilities which completely describe the walk. We describe the construction procedure of the walk on the square lattice. The extension to other two-dimensional lattices is straightforward and will be briefly explained later on (see also figure $3(b)$ ). At step one we have to choose between $q_{0}=4$ directions, in which case the one-step probability $p_{1}$ equals $1 / q_{0}$. For the next step we have trivially $p_{2}=1 / q=1 /\left(q_{0}-1\right)$ as for the usual sAw, which is in fact defined by this transition probability for all steps. The saw is then terminated if it tries to violate the self-avoiding condition.

To define the transition probability for the gasaw we first count how many of the nearest-neighbour sites have not been visited before. Let $n_{i} \leqslant q$ be this number at step $i$. So far we only have a local knowledge about the surroundings. This is clearly not enough to prevent the walker from entering cages which cause termination at some later step. In order to avoid such cages we need additional global knowledge of the conformational structure of the chain. This information is given by the winding number $W_{i}$ at step $i$

$$
\begin{equation*}
W_{i}=\sum_{j=1}^{i} w_{j} . \tag{2}
\end{equation*}
$$

This number is the sum over all angles $w_{j}$ where $j$ runs over all preceding steps. The $w_{j}$ are counted as -1 for a clockwise angle of $90^{\circ}$ between step $j$ and step $(j-1),+1$ for a counterclockwise angle and 0 when the walk proceeds straight ahead ( $w_{0}$ and $w_{1}$ are equal to zero). For different two-dimensional lattices we obviously need a slight modification of this definition. This winding number $W_{i}$ defines what is 'inside' and 'outside' when a cage can be entered. To find out if a cage is present we have to check if one of the nearest neighbours or one of the next-nearest neighbours, which form a half circle as drawn in figure $1(a)$ (encircled sites), has already been visited. If this were the case, the walk would consequently enter a cage; to avoid this, the site is disregarded as a possible jump site. The number of jump sites is at least one but less than or equal to $n_{i}$. The one-step transition probability can thus be defined as

$$
\begin{equation*}
p_{i}=1 / \text { number of jump sites. } \tag{3}
\end{equation*}
$$



Figure 1. (a) A simple example of a short IGSAw, which already displays the property of avoiding cages. (b) This configuration does not fulfil the IGSAW conditions and therefore $P(\{r\})=0$; (c) this walk is a short IGSAW with $P\left(\left\{r^{\prime}\right\}\right) \neq 0$. These simple configurations show the importance of irreversibility.

With this definition the igsaw is completely defined. The jump sites are defined in such a way that the self-avoiding condition is fulfilled and no termination can occur. This can be done because the winding number $W_{i}$ contains the relevant history of the walk and always recognises what is 'outside' for a particular configuration. Note that this information comes from the local analysis of the surroundings of the end of the walk. From this description it should be clear that a similar procedure for a threedimensional lattice is much more complicated and unfortunately a practical method has not yet been found.

A typical example of an IGSAW is shown in figure 2. This computer-generated walk of length $N=100$ builds large cages, suggesting a considerable excluded volume effect. Also the irreversibility can be seen from this figure, namely in those points where the


Figure 2. Typical example of a computer generated IGSAW of length $N=100$. The dashed circles give the positions where the winding number analysis is relevant for the survival of the walk. If the first bond were to be the dotted one (---), which would change the probability of the whole walk by a factor of $3 / 2$, the inverse direction would no longer be an IGSAW and would therefore be forbidden (see also figure $1(b)$ ).
chain touches itself. The open circles in this figure denote the sites where the walk could have travelled into a cage. At these positions the winding number defines the outward direction as one can easily check by performing the sum in equation (2) as given in figure 2. For the IGSAW the irreversibility, which is shown in figure 2, is a much stronger constraint than for the GSAw (Hemmer and Hemmer 1984, Majid et al 1984, Lyklema and Kremer 1984a, b). For $d=2$ the GSAw loses its irreversibility on the honeycomb lattice (Klein 1984). This cannot occur for the igsaw. Figures 1 (b) and $1(c)$ show the most simple examples which illustrate this and also define the 'active' end of the walk. Figure $1(c)$ shows an igSaw configuration with probability $P(\{\boldsymbol{r}\})=\frac{1}{4}\left(\frac{1}{3}\right)^{4}\left(\frac{1}{2}\right)^{2}$ while the configuration in figure $1(b)$ is not an IGSAW and therefore $P \equiv 0$. For $d=2$ it is always possible for $N \rightarrow \infty$ to find the origin of the walk. More precisely, as soon as the end site $N$ and a previous site $i \geqslant 0$ build a cage, which includes site number 0 in its interior, the inverse configuration is not an IGSAW and is therefore forbidden. The probability that this occurs very rapidly approaches 1 with increasing $N$.

From this information, the behaviour of the partition function $Z(N)$ can easily be deduced (Kremer and Lyklema 1985). Using the one-step probabilities of equation (3) the probability $P\left(\{r\}_{N}\right)$ of a configuration $\{r\}_{N}$ of a $N$-step igSaw is simply $P(\{r\})=\Pi_{i=1}^{N} p_{i}$. Because the walker never stops, which means that conservation of probability holds, one gets for the partition function

$$
\begin{equation*}
Z(N)=\sum_{\left\{r_{N}\right\}} P\left(\left\{r_{N}\right\}\right) \equiv 1 \tag{4}
\end{equation*}
$$

With the usual expression (for sAw), $Z(N) \propto\left(q_{\text {eff }} / q_{0}\right)^{N} N^{\gamma-1}$ (de Gennes 1979) the fixed point is equal to one (equation (6)) and

$$
\begin{equation*}
\gamma=1 \tag{5}
\end{equation*}
$$

This gives for the generation function $G(x)$

$$
\begin{equation*}
G(x)=\sum_{N} Z(N) x^{N} \stackrel{x \rightarrow x_{c}^{+}}{x_{c}}\left(x-x_{c}\right)^{-\gamma} . \tag{6}
\end{equation*}
$$

Because $Z(N) \equiv 1$ one directly finds $x_{\mathrm{c}}=1$ and $\gamma=1$ (equation (5)). So far this is the only known analytical result for this walk. It shows that this model is a truly kinetic SAW. For a discussion of the partition function of such kinetic systems see, for example, Nakanishi and Family (1984) and Stella et al (1984). Before turning to the Monte Carlo procedure, we briefly want to explain a few other properties of the IGSAW. In comparison with the usual SAw we see that the possible configurations of the IGSAW form a subset of those of the saw (Kremer and Lyklema 1985). Obviously all the saw trajectories which cannot form part of an infinitely long chain are excluded configurations. As the asymptotic behaviour of the walks is given by the infinite trajectories, at a first glance it could be expected that both walks have the same asymptotic exponent $\nu$. However, the igSaw always finds its way out of dense situations and according to equation (3) such configurations have a higher probability than more expanded ones. Taking this into account it is clear that, as found from the exact enumeration (Kremer and Lyklema 1985)

$$
\begin{equation*}
\left.\left\langle R^{2}(N)\right\rangle_{\mathrm{SAW}}\right\rangle\left\langle R^{2}(N)\right\rangle_{\mathrm{IGSAW}} \tag{7}
\end{equation*}
$$

## 3. The Monte Carlo procedure

The chains are generated by the well known static-sampling procedure (see, for example, Kremer et al (1982) and references therein). For each new step the possible new directions are first selected. Then the new step $(i+1)$ is taken from these directions at random. On the square lattice there is a choice of at least one and at most three possibilities. These possibilities are calculated as follows. First the three nearestneighbour sites are checked to see if one has been visited before. Secondly it must be determined whether one of the free sites leads into a cage. To find out if such a cage can be formed in the next step, the two next-nearest-neighbour sites in the forward direction must also be checked to see if they have been visited before (see figure 1). If one of these sites or the nearest-neighbour site in between them is occupied already at the $k$ th step we have to calculate the difference winding number $\Delta W$

$$
\begin{equation*}
\Delta W=W_{l}-W_{k} . \tag{8}
\end{equation*}
$$

If $\Delta W$ is positive no step in a counterclockwise loop is allowed and, vice versa, no step in a clockwise loop is allowed when $\Delta W$ is negative. The possibility $\Delta W=0$ does not occur because a cage can then not exist. In figure 3 we have illustrated the above discussion with some examples including simple examples for the honeycomb and the triangular lattice. Figure 4 again explains the algorithm for a configuration containing


Figure 3. (a) The typical topological situations which occur during the walk construction. The encircled lattice sites give the positions which have to be analysed for the square lattice. Note that for the IGSAW two of these sites are next-nearest neighbours. (b) The relevant sites are encircled for the construction of an IGSAw on a honeycomb lattice and on the triangular lattice. Note that for the triangular lattice additional winding variables must be introduced to the $\pm 1$ and 0 of the square lattice.


Figure 4. Example of a configuration which displays the most complicated topology which can occur. This part of the walk consists of two nested loops with opposite winding directions. The encircled sites again give the relevant sites for the construction algorithm. The difference in the winding number of step $i_{3}$ and $i_{1}\left(\omega_{1 ;}-\omega_{i_{1}}=-2\right)$ defines 'outward' by proceeding straight forward or by turning through a $+90^{\circ}$ angle. The difference between step $i_{2}$ and $i_{1}\left(\omega_{13}-\omega_{i_{2}}=-2\right)$ (the inner loop) defines 'outward' by proceeding straight forward or by turning through a $-90^{\circ}$ angle. Both restrictions then allow the walk to go only straight ahead.
nested loops. Such configurations are topologically the most complicated ones which can occur. To provide a different perspective on the above description, we study oriented curves in two dimensions. Non-crossing closed lines always enclose an angle of $\pm 2 \pi$. The sign of the angle and the orientation of the last bond define the inside and outside of the loop. On the square lattice we measure the angles in units of $\pi / 2$. The algorithm thus has to check whether a step to a non-occupied (NN) site can build a loop via a NN contact and whether this new step points into this loop. This is given by the orientation of the last bond and the difference of the winding numbers at the contact points. If it points inside, the step is forbidden; otherwise it is allowed. In this way we have generated up to $4 \times 10^{7}$ chains of length $N=100$.

From these configurations we have then calculated the mean square end-to-end distance

$$
\begin{equation*}
\left\langle R^{2}(N)\right\rangle=\left\langle\left(\boldsymbol{r}_{N}-\boldsymbol{r}_{0}\right)^{2}\right\rangle \tag{9}
\end{equation*}
$$

and the fourth moment

$$
\begin{equation*}
\left\langle R^{4}(N)\right\rangle=\left\langle\left(R^{2}(N)\right)^{2}\right\rangle \tag{10}
\end{equation*}
$$

Here $r_{N}$ and $r_{0}$ are the positions of the $N$ th monomer and the zeroth monomer respectively. We have also calculated the mean square radius of gyration and its fourth moment for even values of $N$ only (to save computer time)

$$
\begin{align*}
& \left\langle R_{\mathrm{G}}^{2}(N)\right\rangle=\frac{1}{N+1} \sum_{i=0}^{N}\left\langle\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{\mathrm{CM}}\right)^{2}\right\rangle  \tag{11}\\
& \left\langle R_{\mathrm{G}}^{4}(N)\right\rangle=\left\langle\left(R_{\mathrm{G}}^{2}(N)\right)^{2}\right\rangle \tag{12}
\end{align*}
$$

with

$$
\begin{equation*}
\boldsymbol{r}_{\mathrm{CM}}=\frac{1}{N+1} \sum_{t=0}^{N} \boldsymbol{r}_{r} \tag{13}
\end{equation*}
$$

In addition we have calculated the mean displacement $\left\langle\left(\boldsymbol{r}_{N}-\boldsymbol{r}_{0}\right)\right\rangle$ in order to check the quality of the data. Ideally this quantity should be zero. Using this deviation we have typically found a discrepancy of $0.01 \%$ in $\left\langle R^{2}(N)\right\rangle^{1 / 2}$, showing the high accuracy of the data. The calculations have been performed on an IBM 3081 in extended precision (real *16). The calculation took about 30 h to complete-roughly the same amount of time we took for the exact enumeration ( $N \leqslant 22$, Kremer and Lyklema 1985). In this latter calculation we have not included the very time-consuming radius of gyration calculation. Thus the advantage of a Monte Carlo calculation comes from the possibility of simulating much longer chains for which one can also calculate $\left\langle R_{G}^{2}(N)\right\rangle$. Combining our exact enumeration results and the high-precision Monte Carlo data enables us to give an accurate estimate of the asymptotic behaviour of $\left\langle R^{2}(N)\right\rangle$ and $\left\langle R_{\mathrm{G}}^{2}(N)\right\rangle$.

## 4. Extrapolation methods and results

To extract results from our data we have used two standard methods from series analysis (see, for example, Djordjevic et al 1983). There exist of course more sophisticated methods like a Padé analysis, but data of much higher accuracy are then required (Pearce 1978). Also there seems to be no need to go beyond simple ratio methods because our results are as good as one can expect from Monte Carlo data.

To analyse our data we assume the following asymptotic behaviour for the mean square end-to-end distance and the mean square radius of gyration (for a more general discussion of corrections to scaling see, for example, Privman 1984):

$$
\begin{align*}
& \left\langle R^{2}(N)\right\rangle=A_{R} N^{2 v}\left(1+B_{R} N^{-\Delta_{R}}+C_{R} N^{-1}+\ldots\right)  \tag{14}\\
& \left\langle R_{\mathrm{G}}^{2}(N)\right\rangle=A_{\mathrm{G}} N^{2 \nu}\left(1+B_{\mathrm{G}} N^{-\Delta_{\mathrm{G}}}+C_{\mathrm{G}} N^{-1}+\ldots\right) \tag{15}
\end{align*}
$$

In these expressions $\nu$ is the critical exponent we are looking for. In brackets, the possible leading corrections to scaling are described by a correction term proportional to $N^{-1}$ and an analytical correction proportional to $N^{-1}$. An important question to be settled before one can give a reliable estimate for $\nu$ is whether $\Delta$ is larger than one. This can be seen from the expressions for the effective exponents $\nu(N)$ which are defined in the two methods A and B as follows:

$$
\begin{align*}
\nu_{i}^{\mathrm{A}}(N) & \equiv \frac{N}{2 i}\left(\frac{\left\langle R^{2}(N+i)\right\rangle}{\left\langle R^{2}(N)\right\rangle}-1\right) \\
& =\nu-\frac{1}{2} \Delta B N^{-\Delta}-\frac{1}{2} C N^{-1}+\frac{1}{2} i \nu(2 v-1) N^{-1}+\ldots \tag{16}
\end{align*}
$$

and

$$
\begin{align*}
\nu_{i}^{\mathrm{B}}(N) & \equiv \frac{1}{2} \frac{\ln \left(\left\langle R^{2}(N+i)\right\rangle /\left\langle R^{2}(N)\right\rangle\right)}{\ln [(N+i) / N]} \\
& =\nu-\frac{1}{2} \Delta B N^{-\Delta}-\frac{1}{2} C N^{-1}+\ldots . \tag{17}
\end{align*}
$$

From these expressions we can estimate $\nu$ by plotting the calculated $\nu(N)$ against
$1 / N$. This asymptotically results in a straight line if $\Delta>1$. Only then can we extrapolate $\nu(N)$ to get a reliable estimate for $\nu$. In this way we have analysed $\left\langle R^{2}(N)\right\rangle$ and $\left\langle R^{4}(N)\right\rangle$ for $i=1,2$ and 4 and $\left\langle R_{\mathrm{G}}^{2}(N)\right\rangle$ and $\left\langle R_{\mathrm{G}}^{4}(N)\right\rangle$ for $i=2$ and 4 . In figure 5 the results obtained from $\left\langle R^{2}(N)\right\rangle$ are plotted for method B and $i=2$ and 4. Equation (17) already shows the advantages of method B. Here the corrections which describe the behaviour of $\nu^{\mathrm{B}}(N)$ clearly have a simpler structure than for method A. This is also of importance for estimating the corrections to the leading behaviour. The data for $\nu(N)$ already show a linear behaviour with $1 / N$ for $N$ larger than 16 , indicating that the assumption $\Delta>1$ is correct. This supports our previous results from exact enumerations (Kremer and Lyklema 1985) and gives a first estimate of $\nu=0.567$.

To analyse this in more detail we have studied the difference

$$
\begin{align*}
D(N) & =\nu_{2}^{\mathrm{B}}(N)-\nu_{2}^{\mathrm{B}}(N-2) \\
& =\Delta^{2} B N^{-(1+\Delta)}+C N^{-2} . \tag{18}
\end{align*}
$$



Figure 5. Plot of $\nu(N)$ using equation (17) for $\left\langle R^{2}(N)\right\rangle$ (lower curve) and using the analogous expression for $\left\langle R^{4}(N)\right\rangle$ (upper curve) against $1 / N$ for $98 \geqslant N \geqslant 10$ and (a) $i=2$ and ( $b$ ) $i=4$. Note that for $N \leqslant 20$ no distinction can be made between the MC data and the enumeration results. In order to have a realistic impression of the errors no averaging over various data points has been made.

This result is obtained by substituting equation (17) into the left-hand side of equation (18). The analysis of $D(N)$ versus $N^{-2}$ for the enumeration data clearly shows a tendency to linear behaviour for $N \geqslant 14$. Note that for this analysis it is not necessary to know the value of $\nu$. The data for $D(N) N^{2}$ and $\ln (D(N)) / \ln N$ are given in table 1. There we also present the raw mC and enumeration data. From the enumeration data we conclude that asymptotically $D(N)$ is given by

$$
\begin{equation*}
D(N) \propto 1.05 N^{-2} \tag{19}
\end{equation*}
$$

Table 1. Results for $D(N)=\nu(N)-\nu(N-2)$ from the enumerations for $\nu(N)$ calculated using equation (18).

| $N$ | $\frac{1}{2} \ln (D(N)) / \ln N$ | $D(N) N^{2}$ |
| :--- | :--- | :--- |
| 12 | 1.015 | 0.927 |
| 14 | 1.003 | 0.984 |
| 16 | 0.999 | 1.004 |
| 18 | 0.997 | 1.016 |
| 20 | 0.996 | 1.027 |

This estimate is nicely consistent with the same analysis of the Monte Carlo data. They are, of course not precise enough to improve the accuracy of equation (19). For this an accuracy of at least one order of magnitude higher would be needed for the mC results. Using this information equation (17) can be rewritten as

$$
\begin{equation*}
\nu(N)=\nu+\frac{1}{2}\left(1.05 N^{-1}\right) . \tag{20}
\end{equation*}
$$

We estimate from the enumeration data for $\nu$ the value 0.57 . Because this analysis is based on a rather short series ( $N \leqslant 22$ ) of which only the last three points suggest an asymptotic behaviour it is highly desirable to study much longer series. This can only be done using a Monte Carlo technique and combining both results. After the foregoing discussion it is not surprising to see that the Monte Carlo data in figure 5 can be fitted very well by a straight line. For small $N$ the fit is nearly perfect. For larger $N$ the scatter increases because it becomes more and more difficult to sample all the walks adequately due to the tremendous number of possibilities. For large $N$ we have sampled up to $4 \times 10^{7}$ walks which gives an accuracy of better than $0.02 \%$ for the mean square displacement (see also table 2). Estimated from the scatter in the data this still results in an error of $0.5 \%$ per point for such a sensitive quantity as a critical exponent. However, due to the large number of points it is possible to give an accurate estimate from a two-parameter least-squares fit for $\nu$ and $C$ assuming linear behaviour with $1 / N$. The values we have found are

$$
\begin{align*}
& \nu=0.567 \pm 0.003 \\
& C=-1.00 \pm 0.10 . \tag{21}
\end{align*}
$$

The value of $C$ is checked by fitting $\nu=\nu(N)+\frac{1}{2} C / N$ to a zero-slope line in figure 6 . Note that $C$ is the only fit parameter in this plot. It should be mentioned that $C$, the correction to scaling amplitude, obtained by the mC data is in good agreement with the enumeration value (equation (19), $C=-1.05$ ). The errors here are estimated from the results obtained by fitting a varying number of points from subintervals of different

Table 2. Enumeration results for $N \leqslant 22$ for the igSaw on the square lattice. $N$ gives the number of steps, while Conf gives the number of different configurations. The partition function $Z(N)$ is always equal to $1 .\left\langle R^{2}\right\rangle$ and $\left\langle R^{4}\right\rangle$ are calculated using equations (9) and (10).

| $N$ | Conf | $Z(N)$ | $\left\langle R^{2}\right\rangle$ | $\left\langle R^{4}\right\rangle$ | $\left\langle R^{6}\right\rangle$ |
| ---: | ---: | :--- | :--- | :--- | :--- |
| 2 | 3 | $0.10000000 \mathrm{E}+01$ | $0.26666667 \mathrm{E}+01$ | $0.80000000 \mathrm{E}+01$ | $0.26666667 \mathrm{E}+02$ |
| 3 | 9 | $0.10000000 \mathrm{E}+01$ | $0.45555556 \mathrm{E}+01$ | $0.25888889 \mathrm{E}+02$ | $0.16455556 \mathrm{E}+03$ |
| 4 | 25 | $0.00000000 \mathrm{E}+01$ | $0.67407407 \mathrm{E}+01$ | $0.58222222 \mathrm{E}+02$ | $0.57985185 \mathrm{E}+03$ |
| 5 | 71 | $0.10000000 \mathrm{E}+01$ | $0.90000000 \mathrm{E}+01$ | $0.10786420 \mathrm{E}+03$ | $0.15112222 \mathrm{E}+04$ |
| 6 | 195 | $0.10000000 \mathrm{E}+01$ | $0.11427984 \mathrm{E}+02$ | $0.17735802 \mathrm{E}+03$ | $0.32662551 \mathrm{E}+04$ |
| 7 | 541 | $0.10000000 \mathrm{E}+01$ | $0.13877915 \mathrm{E}+02$ | $0.26835802 \mathrm{E}+03$ | $0.62124294 \mathrm{E}+04$ |
| 8 | 1475 | $0.10000000 \mathrm{E}+01$ | $0.16450846 \mathrm{E}+02$ | $0.38273800 \mathrm{E}+03$ | $0.10773096 \mathrm{E}+05$ |
| 9 | 4041 | $0.10000000 \mathrm{E}+01$ | $0.19034370 \mathrm{E}+02$ | $0.52160616 \mathrm{E}+03$ | $0.17417662 \mathrm{E}+05$ |
| 10 | 10965 | $0.10000000 \mathrm{E}+01$ | $0.21705647 \mathrm{E}+02$ | $0.68637624 \mathrm{E}+03$ | $0.26661495 \mathrm{E}+05$ |
| 11 | 29811 | $0.10000000 \mathrm{E}+01$ | $0.24388775 \mathrm{E}+02$ | $0.87794370 \mathrm{E}+03$ | $0.39057096 \mathrm{E}+05$ |
| 12 | 80589 | $0.10000000 \mathrm{E}+01$ | $0.27138380 \mathrm{E}+02$ | $0.10974177 \mathrm{E}+04$ | $0.55195576 \mathrm{E}+05$ |
| 13 | 218021 | $0.10000000 \mathrm{E}+01$ | $0.29899167 \mathrm{E}+02$ | $0.13455441 \mathrm{E}+04$ | $0.75699070 \mathrm{E}+05$ |
| 14 | 587635 | $0.10000000 \mathrm{E}+01$ | $0.32714788 \mathrm{E}+02$ | $0.16232582 \mathrm{E}+04$ | $0.10122325 \mathrm{E}+06$ |
| 15 | 1584243 | $0.10000000 \mathrm{E}+01$ | $0.35539745 \mathrm{E}+02$ | $0.19311800 \mathrm{E}+04$ | $0.13245036 \mathrm{E}+06$ |
| 16 | 4259937 | $0.10000000 \mathrm{E}+01$ | $0.38411938 \mathrm{E}+02$ | $0.22701279 \mathrm{E}+04$ | $0.17009236 \mathrm{E}+06$ |
| 17 | 11454841 | $0.10000000 \mathrm{E}+01$ | $0.41292672 \mathrm{E}+02$ | $0.26406472 \mathrm{E}+04$ | $0.21488488 \mathrm{E}+06$ |
| 18 | 30742703 | $0.10000000 \mathrm{E}+01$ | $0.44214468 \mathrm{E}+02$ | $0.30434511 \mathrm{E}+04$ | $0.26758986 \mathrm{E}+06$ |
| 19 | 82498935 | $0.10000000 \mathrm{E}+01$ | $0.47144473 \mathrm{E}+02$ | $0.34790392 \mathrm{E}+04$ | $0.32899105 \mathrm{E}+06$ |
| 20 | 221065461 | $0.10000000 \mathrm{E}+01$ | $0.50110850 \mathrm{E}+02$ | $0.39480469 \mathrm{E}+04$ | $0.39989589 \mathrm{E}+06$ |
| 21 | 592272339 | $0.10000000 \mathrm{E}+01$ | $0.53085016 \mathrm{E}+02$ | $0.44509303 \mathrm{E}+04$ | $0.48113185 \mathrm{E}+06$ |
| 22 | 1584987143 | $0.10000000 \mathrm{E}+01$ | $0.56091946 \mathrm{E}+02$ | $0.49882701 \mathrm{E}+04$ | $0.57354837 \mathrm{E}+06$ |



Figure 6. Plot of $\nu(N)+\frac{1}{2} C N^{-1}$ against $1 / N . \nu(N)$ is determined from $\left\langle R^{2}(N)\right\rangle$ and $i=2$ using equation (17). This plot is the most sensitive check for determining $C$, the amplitude of the leading correction to scaling. The data give $C=1.00 \pm 0.10$ in excellent agreement with the earlier enumeration results. Note the strongly enhanced scale for $\nu+\frac{1}{2} C N^{-1}$ compared to figure 5.
lengths. Here we have analysed $\nu_{2}^{\mathrm{B}}(N)$ only, but the same results are obtained if we study $\nu_{i}^{\mathrm{B}}(N)$ for $i \neq 2, \nu_{i}^{\mathrm{A}}(N)$ or if we study the fourth moments as can be seen from the figures. For the radius of gyration the situation is more complicated. As already
can be seen from its definition (equations (11) and (13)) the mean square radius of gyration $\left\langle R_{\mathrm{G}}^{2}(N)\right\rangle$ for a fixed value of $N$ is governed by much smaller internal distances than the corresponding distance from $\left\langle R^{2}(N)\right\rangle$. From this, one can expect that the asymptotic behaviour for $\left\langle R_{\mathrm{G}}^{2}(N)\right\rangle$ will occur for larger $N$ values (see also table 3 ). Also the values of the correction terms are not necessarily the same. To study this we have again analysed $\nu_{2}^{\mathrm{B}}(N)$ and plotted it against $1 / N$ now for $R_{\mathrm{G}}^{2}$. This gives a very smooth curve which extrapolates to a value of $\sim 0.573$ for $\nu$, which is not consistent with the result from $\left\langle R^{2}(N)\right\rangle$. However, the data do not seem to lie on a straight line;

Table 3. MC results for $10 \leqslant N \leqslant 100$. The column headed 'walks' gives the number of walks which are sampled. $\left\langle R^{2}\right\rangle$ and $\left\langle R^{4}\right\rangle$ are again calculated using equations (9) and (10) while $\left\langle R_{\mathrm{G}}^{2}\right\rangle$ and $\left\langle R_{\mathrm{G}}^{4}\right\rangle$ are given by equations $(11)-(13)$. Note that for $\left\langle R_{\mathrm{G}}^{2}\right\rangle$ and $\left\langle R_{\mathrm{G}}^{4}\right\rangle$ a smaller number of walks is sampled.

| $N$ | Walks | $\left\langle R^{2}\right\rangle$ | $\left\langle R^{4}\right\rangle$ | Walks | $\left\langle R_{\mathrm{G}}^{2}\right\rangle$ | $\left\langle R_{\mathrm{G}}^{4}\right\rangle$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | 7360000 | 21.6899 | 685.4719 | 1150000 | 3.4009 | 12.9456 |
| 11 | 7360000 | 24.3725 | 876.8932 |  |  |  |
| 12 | 7360000 | 27.1244 | 1096.2213 | 1150000 | 4.2503 | 20.3886 |
| 13 | 7360000 | 29.8852 | 1344.0491 |  |  |  |
| 14 | 7360000 | 32.7036 | 1621.8046 | 1150000 | 5.1320 | 29.9288 |
| 15 | 7360000 | 35.5251 | 1929.2320 |  |  |  |
| 16 | 7360000 | 38.3942 | 2267.6759 | 1150000 | 6.0405 | 41.7032 |
| 17 | 7360000 | 41.2753 | 2638.1196 |  |  |  |
| 18 | 7360000 | 44.1995 | 3040.9494 | 1150000 | 6.9716 | 55.8239 |
| 19 | 7360000 | 47.1315 | 3476.5542 |  |  |  |
| 20 | 7360000 | 50.0984 | 3956.2170 | 1750000 | 7.9228 | 72.3976 |
| 21 | 7360000 | 53.0681 | 4447.3019 |  |  |  |
| 22 | 7360000 | 56.0692 | 4983.5579 | 1750000 | 8.8906 | 91.5154 |
| 23 | 7360000 | 59.0779 | 5554.5771 |  |  |  |
| 24 | 7360000 | 62.1152 | 6160.7440 | 1750000 | 9.8752 | 113.2791 |
| 25 | 7360000 | 65.1697 | 6803.5813 |  |  |  |
| 26 | 7360000 | 68.2468 | 7482.7275 | 1750000 | 10.8751 | 137.7760 |
| 27 | 7360000 | 71.3375 | 8199.5117 |  |  |  |
| 28 | 7360000 | 74.4475 | 8952.7011 | 1750000 | 11.8889 | 165.0808 |
| 29 | 7360000 | 77.5573 | 9740.4986 |  |  |  |
| 30 | 7360000 | 80.7026 | 10569.6473 | 2390000 | 12.9158 | 195.2535 |
| 31 | 7360000 | 83.8528 | 11435.6710 |  |  |  |
| 32 | 7360000 | 87.0304 | 12341.7653 | 2390000 | 13.9543 | 228.3783 |
| 33 | 7360000 | 90.2124 | 13287.7069 |  |  |  |
| 34 | 7360000 | 93.4143 | 14273.5492 | 2390000 | 15.0038 | 264.5176 |
| 35 | 7360000 | 96.6224 | 15299.9590 |  |  |  |
| 36 | 7360000 | 99.8500 | 16265.8726 | 239.000 | 16.0636 | 303.7029 |
| 37 | 7360000 | 103.0775 | 17471.0965 |  |  |  |
| 38 | 7360000 | 106.3260 | 18616.9040 | 2390000 | 17.1336 | 346.0218 |
| 39 | 7360000 | 109.5862 | 19803.8816 |  |  |  |
| 40 | 16500000 | 112.8784 | 21040.9220 | 3080000 | 18.2155 | 391.6194 |
| 41 | 16500000 | 116.1535 | 22308.9588 |  |  |  |
| 42 | 16500000 | 119.4457 | 23618.6796 | 3080000 | 19.3043 | 440.3992 |
| 43 | 16500000 | 122.7408 | 24969.5525 |  |  |  |
| 44 | 16500000 | 126.0484 | 26362.5979 | 3080000 | 20.4018 | 492.4802 |
| 45 | 16500000 | 129.3633 | 27797.3539 |  |  |  |
| 46 | 16500000 | 132.6894 | 29274.6927 | 3080000 | 21.5068 | 547.8797 |
| 47 | 16500000 | 136.0258 | 30798.2856 |  |  |  |
|  |  |  |  |  |  |  |

Table 3. (continued)

| $N$ | Walks | $\left\langle R^{2}\right\rangle$ | $\left\langle R^{4}\right\rangle$ | Walks | $\left(R_{\mathrm{G}}^{2}\right)$ | $\left\langle R_{G}^{4}\right\rangle$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 48 | 16500000 | 139.3855 | 32370.6911 | 3080000 | 22.6192 | 606.6520 |
| 49 | 16500000 | 142.7449 | 33982.7739 |  |  |  |
| 50 | 16500000 | 146.1201 | 35638.4737 | 3780000 | 23.7390 | 668.9171 |
| 51 | 16500000 | 149.4925 | 37335.8932 |  |  |  |
| 52 | 16500000 | 152.8794 | 39080.4534 | 3780000 | 24.8654 | 734.5599 |
| 53 | 16500000 | 156.2803 | 408726664 |  |  |  |
| 54 | 16500000 | 159.6901 | 42709.3020 | 3780000 | 25.9988 | 803.7291 |
| 55 | 16500000 | 163.1020 | 44589.9722 |  |  |  |
| 56 | 16500000 | 1665203 | 46512.4003 | 3780000 | 27.1384 | 876.4345 |
| 57 | 16500000 | 169.9482 | 48481.0749 |  |  |  |
| 58 | 16500000 | 173.3893 | 50497.8741 | 3780000 | 28.2844 | 952.7276 |
| 59 | 16500000 | 176.8306 | 52560.5694 |  |  |  |
| 60 | 27300000 | 180.2567 | 54659.9988 | 4630000 | 29.4390 | 1032.7669 |
| 61 | 27300000 | 183.7196 | 56817.7527 |  |  |  |
| 62 | 27300000 | 187.1935 | 59019.4392 | 4630000 | 30.5973 | 1116.3464 |
| 63 | 27300000 | 190.6677 | 61267.6593 |  |  |  |
| 64 | 27300000 | 194.1529 | 63562.3700 | 4630000 | 31.7616 | 1203.6513 |
| 65 | 27300000 | 197.6481 | 65908.6043 |  |  |  |
| 66 | 27300000 | 201.1506 | 68299.3869 | 4630000 | 32.9317 | 1294.6915 |
| 67 | 27300000 | 204.6536 | 70737.4001 |  |  |  |
| 68 | 27300000 | 208.1734 | 73228.0447 | 4630000 | 34.1070 | 1389.4713 |
| 69 | 27300000 | 211.6888 | 75761.3580 |  |  |  |
| 70 | 27300000 | 215.2158 | 78344.1712 | 5620000 | 35.2886 | 1488.1840 |
| 71 | 27300000 | 218.7428 | 80973.5680 |  |  |  |
| 72 | 27300000 | 222.2857 | 83651.3542 | 5620000 | 36.4741 | 1590.5924 |
| 73 | 27300000 | 225.8344 | 86380.2515 |  |  |  |
| 74 | 27300000 | 229.3924 | 89159.9508 | 5620000 | 37.6645 | 1696.8603 |
| 75 | 27300000 | 232.9577 | 91992.4273 |  |  |  |
| 76 | 27300000 | 236.5311 | 94871.8744 | 5620000 | 38.8598 | 1807.0182 |
| 77 | 27300000 | 240.1038 | 97796.4868 |  |  |  |
| 78 | 27300000 | 243.6858 | 100771.7922 | 5620000 | 40.0598 | 1921.1034 |
| 79 | 27300000 | 247.2790 | 103805.0564 |  |  |  |
| 80 | 40500000 | 250.8533 | 106861.3683 | 6830000 | 41.2618 | 2038.8756 |
| 81 | 40500000 | 254.4559 | 109990.8819 |  |  |  |
| 82 | 40500000 | 258.0618 | 113168.1877 | 6830000 | 42.4710 | 2160.9328 |
| 83 | 40500000 | 261.6728 | 116393.9414 |  |  |  |
| 84 | 40500000 | 265.2936 | 119673.8022 | 6830000 | 43.6849 | 2287.0405 |
| 85 | 40500000 | 268.8159 | 123001.5471 |  |  |  |
| 86 | 40500000 | 272.5500 | 126384.1045 | 6830000 | 44.9035 | 2417.2362 |
| 87 | 40500000 | 276.1869 | 129820.5543 |  |  |  |
| 88 | 40500000 | 279.8284 | 133304.8293 | 6830000 | 46.1263 | 2551.5286 |
| 89 | 40500000 | 283.4721 | 13837.3381 |  |  |  |
| 90 | 40500000 | 287.1304 | 140430.9064 | 8420000 | 47.3503 | 2689.5755 |
| 91 | 40500000 | 290.7905 | 144074.6794 |  |  |  |
| 92 | 40500000 | 294.4546 | 147764.5360 | 8420000 | 48.5809 | 2832.0498 |
| 93 | 40500000 | 298.1200 | 151505.0363 |  |  |  |
| 94 | 40500000 | 301.7974 | 155304.8957 | 8420000 | 49.8153 | 2978.6699 |
| 95 | 40500000 | 305.4788 | 159159.6228 |  |  |  |
| 96 | 40500000 | 309.1676 | 163068.0948 | 8420000 | 51.0535 | 3129.4629 |
| 97 | 40500000 | 312.8621 | 167031.2396 |  |  |  |
| 98 | 40500000 | 316.5622 | 171045.6748 | 8420000 | 52.2955 | 3284.4527 |
| 99 | 40500000 | 320.2693 | 175119.9084 |  |  |  |
| 100 | 40500000 | 323.9847 | 179241.2046 | 8420000 | 53.5414 | 3443.6847 |

they still show a slightly increasing curvature. There may be two reasons for this; either the data are not yet in the asymptotic region or the leading correction to scaling is not proportional to $1 / N$. To analyse this in more detail we rewrite equation (17) for $\left\langle R_{\mathrm{G}}^{2}(N)\right\rangle$ as

$$
\begin{equation*}
\ln \left(\nu_{2}^{\mathrm{B}}(N)-\nu_{\mathrm{est}}\right)=\ln \left(-\frac{1}{2} \Delta_{\mathrm{G}} B_{\mathrm{G}}\right)-\Delta_{\mathrm{G}} \ln N . \tag{22}
\end{equation*}
$$

Here we have assumed that for the radius of gyration we have $\Delta_{\mathrm{G}}<1$ and $B_{\mathrm{G}}<0$, an assumption which is suggested by the $N$ dependence of the data. For $\nu_{\text {est }}$ we take the value 0.567 from the $\left\langle R^{2}(N)\right\rangle$ analysis. A plot of equation (22) is given in figure 7. From the resulting straight line we estimate

$$
\begin{equation*}
\Delta_{\mathrm{G}}=0.64 \pm 0.10 \tag{23}
\end{equation*}
$$



Figure 7. Plot of $\ln \left(\nu(N)-\nu_{\text {est }}\right)$ against $\ln N$ using equation (22) for $\left\langle R_{\mathrm{G}}^{2}\right\rangle$ and $i=2$ to determine the leading correction to scaling. For $\nu_{\text {est }}$ we took the asymptotic $\nu$ value as deduced from the $\left\langle R^{2}(N)\right\rangle$ data, $\nu=0.567$. The data nicely fit a straight line with a slope which gives $\Delta=0.64$. Note that the scatter of the data determines the errors especially for the data at $N=90,80,70 \ldots$ because there $\nu(N)$ connects statistically nearly-independent samples.

This is in remarkable contrast with the result for $\left\langle R^{2}(N)\right\rangle$ where we found $\Delta_{R}=1$. To estimate $\nu$ from the radius of gyration data we have to plot $\nu_{2}^{\mathrm{B}}(N)$ against $N^{-0.64}$ (see figure 8). This indeed results in a straight line for $N \geqslant 35$ which extrapolates to the expected value of 0.567 . From the slope of this figure we then calculate

$$
\begin{equation*}
B_{\mathrm{G}}=-0.92 \pm 0.10 . \tag{24}
\end{equation*}
$$

This value is confirmed by a one-parameter fit of $D(N)$ against $N^{-(1+\Delta)}$.
We now still have to calculate the prefactors $A_{R}$ and $A_{\mathrm{G}}$. With the above given values for the exponent and the correction terms we can estimate this from

$$
\begin{align*}
& A_{R}=\frac{\left\langle R^{2}(N)\right\rangle}{N^{2 \nu}\left(1+C_{R} N^{-1}\right)} \\
& A_{\mathrm{G}}=\frac{\left\langle R_{\mathrm{G}}^{2}(N)\right\rangle}{N^{2}\left(1+B_{\mathrm{G}} N^{-\Delta_{\mathrm{G}}}\right)} \tag{25}
\end{align*}
$$



Figure 8. Plot of $\nu(N)$ against $1 / N^{064}$ for $\left\langle R_{\mathrm{G}}^{2}(N)\right\rangle$ (lower curve) and $\left\langle R_{\mathrm{G}}^{4}(N)\right\rangle$ (upper curve) for $98 \geqslant N \geqslant 10 . \nu(N)$ is calculated using equation (17) with $i=2$.

This results in

$$
\begin{align*}
& A_{R}=1.766  \tag{26}\\
& A_{\mathrm{G}}=0.303
\end{align*}
$$

and $\left\langle R_{\mathrm{G}}^{2}(N)\right\rangle /\left\langle R^{2}(N)\right\rangle=A_{\mathrm{G}} / A_{R}=0.1652$ for $N=100$ where $A_{R}, A_{\mathrm{G}}$ and $A_{\mathrm{G}} / A_{R}$ still show a very small increase, which could change the last one or two digits a little. This amplitude ratio is surprisingly close to that of the usual random walk value of $\frac{1}{6}$, if not equal when the ratio is extrapolated to $N \rightarrow \infty$. Because we also have by construction $\gamma=1$, this may suggest a very late asymptotic behaviour resulting also in a random walk value of $\frac{1}{2}$ for $\nu$. However, our data are completely inconsistent with a logarithmic correction. This is illustrated in figure 9. Details are given in the figure caption. Also from the fact that for $N=100$ the ratio is already practically $\frac{1}{6}$ whereas $\nu(N)$ does not show any sign of bending down to $\nu=\frac{1}{2}$, we conclude that we have assumed the correct asymptotic behaviour (equation (14)).

For the asymptotic ratios of the moments we find

$$
\begin{align*}
& \left\langle R^{2}(N)\right\rangle /\left\langle R^{4}(N)\right\rangle^{1 / 2}=0.77 \\
& \left\langle R_{\mathrm{G}}^{2}(N)\right\rangle /\left\langle R_{\mathrm{G}}^{4}(N)\right\rangle^{1 / 2}=0.91 . \tag{27}
\end{align*}
$$

Thus we find for the asymptotic value of the variance

$$
\begin{align*}
& \frac{\left(\left\langle R^{4}(N)\right\rangle-\left\langle R^{2}(N)\right\rangle^{2}\right)^{1 / 2}}{\left\langle R^{2}(N)\right\rangle}=0.84 \\
& \frac{\left.\left\langle R_{\mathrm{G}}^{4}(N)\right\rangle-\left\langle R_{\mathrm{G}}^{2}(N)\right\rangle^{2}\right)^{1 / 2}}{\left\langle R_{\mathrm{G}}^{2}(N)\right\rangle}=0.45 . \tag{28}
\end{align*}
$$

This non-vanishing variance illustrates the need for high-precision calculations of these relatively short chains as opposed to much less accurate simulations for very long chains.

The last quantity which we have studied is the winding angle of the walk (Fisher et al 1984). We define $\theta(N)$ as the winding number in the units which we used for


Figure 9. Plot of $\nu(N)$ against $1 / \ln N$ for $\left\langle R^{2}(N)\right\rangle$ and $i=2$. Here $\nu(N)$ again is determined by equation (17). Assuming a behaviour of $\left\langle R^{2}(N)\right\rangle=A N^{2 \nu}\left(\ln ^{\alpha} N+\ldots\right), \nu(N)$ should be proportional to $1 / \ln N$. The data are clearly inconsistent with such an assumption. The main purpose of this figure is to test whether the data can bend down to $\nu=1 / 2$ via a logarithmic correction. The slope of the data points in the opposite direction. In order to reach $\nu=1 / 2$ the data must behave very strangely, with at least one inflection point.
the construction of the walk. For the asymptotic behaviour of $\left\langle\theta^{2}(N)\right\rangle$ we have assumed

$$
\begin{equation*}
\left\langle\theta^{2}(N)\right\rangle \sim(\ln N)^{p} . \tag{29}
\end{equation*}
$$

From our analysis we find

$$
\begin{equation*}
p=0.9 \pm 0.1 . \tag{30}
\end{equation*}
$$

This must be compared with 2.00 which one expects to hold for the Rw and 1.22 which is found for the saw. It is also argued, however, that this number should be one. We find the same behaviour for the ratio $\left\langle\theta^{4}(N)\right\rangle /\left\langle\theta^{2}(N)\right\rangle^{2}$. For the RW one expects to find the value 3. For the saw the value approaches 3 from above, whereas for the IGSAw we always find that $\left\langle\theta^{4}(N)\right\rangle /\left\langle\theta^{2}(N)\right\rangle^{2}<3$ but increasing with $N$. A plot of $\left\langle\theta^{4}(N)\right\rangle /\left\langle\theta^{2}(N)\right\rangle^{2}$ against $1 / N$ shows a distinct curvature even for $N=100$. We estimate $3 \geqslant\left\langle\theta^{4}(N)\right\rangle /\left\langle\theta^{2}(N)\right\rangle^{2} \geqslant 2.97$, but within the error bars the ratio can approach 3 .

## 5. Conclusions

We have given a detailed analysis of the properties of the IGSAW, a truly kinetic and completely self-avoiding walk. By the use of high-precision Monte Carlo data we extended our previous series analysis of exact enumeration data ( $N \leqslant 22$ ) (Kremer and Lyklema 1985) up to $N=100$. Because of the high accuracy of the data (see the tables) we are able to apply the methods used in series analysis to analyse the data. Note that the plotted results are never smoothed by any kind of averaging over various points. Therefore the scatter of the data give a realistic estimate of the errors, without additional sources of errors which depend on how one analyses the data. The reason for simulating many, relatively short chains instead of sampling very long, but very
few chains can be deduced from equation (28). The fluctuation of $\left\langle R^{2}\right\rangle$ and $\left\langle R_{\mathrm{G}}^{2}\right\rangle$ show an asymptotically non-vanishing variance. For $\left\langle R^{2}(N)\right\rangle$ the variance stays at 0.84 . This means that the width of the distribution function does not decrease! Therefore, to get data of high quality which is necessary for the calculation of critical exponents, a number of samples are needed which are, for $N$ distinctly larger than 100, beyond the present computing possibilities. Therefore we claim that the present method is the best way to study such systems without spending an extraordinary amount of computing time. An additional check of the quality of the data is given by a comparison with the exact enumeration results (see the tables). They show a perfect coincidence, so that the two results in the foregoing figures are completely indistinguishable.

The corrections to scaling, as determined for $\left\langle R^{2}(N)\right\rangle$ and $\left\langle R_{\mathrm{G}}^{2}(N)\right\rangle$, are much more difficult to determine. A first estimate for $\left\langle R^{2}(N)\right\rangle$ comes from the enumeration data. The leading $N^{-1}$ correction to scaling for $\left\langle R^{2}(N)\right\rangle$ is excellently confirmed by the Monte Carlo results. Of course we cannot distinguish between $N^{-0.95}$ and $N^{-1.0}$ or a combination of such exponents, but we can conclude that the correction to scaling for $\left\langle R^{2}(N)\right\rangle$ is at least for one decade governed by an $N^{-x}$ behaviour, with $x \simeq 1$. Because $\gamma=1$ and also because amplitude ratios are the same as for random walks it could be argued that $\nu=1 / 2$, and that there might be logarithmic corrections. In order to have such a situation, a very different result from what actually happens would be expected (see figure 9). In order to bend down to $\nu=1 / 2$, figure 9 must have an inflection point, a highly unexpected feature. Our conclusion from the results for $\left\langle R^{2}\right\rangle,\left\langle R^{4}\right\rangle$, is that we can exclude such a behaviour and therefore our estimated error for $\nu=0.567 \pm 0.003$ is reliable. A very interesting point is that the corrections to scaling for $\left\langle R_{\mathrm{G}}^{2}\right\rangle$ are, within the chain length we analyse, proportional to $N^{-0.64}$ instead of $N^{-1}$ as for $\left\langle R^{2}\right\rangle$. This is because $\left\langle R_{\mathrm{G}}^{2}\right\rangle$ is governed by much smaller internal distances. $\left\langle R_{\mathrm{G}}^{2}\right\rangle$ is defined as the mean square distance of all monomers from the centre of mass and can be rewritten (Flory 1969) as the average squared internal distance between all monomers. Taking this into account, at least a larger amplitude and possibly a smaller exponent for the corrections to scaling can be expected, compared to the ones for $\left\langle R^{2}\right\rangle$.

Because of the current controversy for the corrections to scaling for the usual saw (see, for example, Privman 1984) it is very interesting to check these questions for these systems also (Lyklema and Kremer 1985). An open question is the extension of this model to three dimensions. It has been suggested by us (Kremer and Lyklema 1984) that this walk might have an upper critical dimension of three. Because of the non-triviality of this problem we have not yet studied this problem in three dimensions. Also for an analytical study of $d_{c}$ which of course is highly desirable, it is first necessary to formulate the problem in three dimensions. The igSaw is, compared with other kinetic growth models like diffusion-limited aggregation (Witten and Sander 1983), a more simple model. An analytical study of the present model might therefore give some insight in the difficulties encountered there. A physical realisation of this model could be the diffusion-limited growth of a chain on a surface. With the condition that the chain cannot relax during the growth process, this polymer should show up a typical IGSAW configuration.

Another question is whether there is any connection to the $\theta$ point of real polymers. This speculation came up in connection with the discussion of the GSAw (Majid et al 1984, Kremer and Lyklema 1985). However, there is still the question whether such irreversible kinetic models can describe equilibrium properties of physical systems. The other more striking arguments against a $\theta$ analogy is the behaviour discussed in figure 1 (b), which for $N \rightarrow \infty$ always defines the origin of the walk, in strong contrast
with the $\theta$ point behaviour of a polymer where there is no preferred end. Also this walk may describe the cluster-hull properties (Weinrib and Trugman 1984). Although the numerical results for $\nu$ given here are in very good agreement with numerical results for the cluster hull (Voss 1984) the same arguments concerning the 'origin' of the walk for the $\theta$ discussion again show that the IGSAW is topologically different from the cluster hull. The cluster hull can be described by a modified igSaw, which grows symmetrically and therefore does not have any distinguished origin. For a ring closing version Weinrib and Trugman (1984) showed this for clusters on the triangular lattice.

To summarise we have presented an extensive numerical analysis of the recently introduced indefinitely-growing self-avoiding walk IGSAW (Kremer and Lyklema 1985). The exponent $\gamma$ is equal to 1 . For the exponent $\nu$ we find from $\left\langle R^{2}\right\rangle,\left\langle R^{4}\right\rangle,\left\langle R_{\mathrm{G}}^{2}\right\rangle$ and $\left\langle R_{\mathrm{G}}^{4}\right\rangle$ extrapolations $\nu=0.567 \pm 0.003$. The leading correction to scaling is proportional to $N^{-!}$for $\left\langle R^{2}\right\rangle$ while it is proportional to $N^{-0.64}$ for $\left\langle R_{G}^{2}\right\rangle$ :

$$
\begin{align*}
& R^{2}(N)=1.77 N^{2 \times 0.567}\left(1-1.00 N^{-1}+\ldots\right)  \tag{31}\\
& R_{\mathrm{G}}^{2}(N)=0.30 N^{2 \times 0.567}\left(1-0.92 N^{-0.64}+\ldots\right) .
\end{align*}
$$

Besides these exponent the corresponding amplitudes and amplitude ratios are determined, including the winding angle ratios.

## References

Amit D J, Parisi G and Peliti L 1983 Phys. Rev. B 271635
Djordjevic Z V, Majid J, Stanley H E and dos Santos R J 1983 J. Phys. A: Math. Gen. 16 L519
Fisher M E, Privman V and Redner S 1984 J. Phys. A: Math. Gen. 17 L569
Flory P J 1969 Statistical Mechanics of Chain Molecules (New York: Interscience) de Gennes P G 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell UP)
Hemmer S and Hemmer P C 1984 J. Chem. Phys. 81584
Klein D J 1984 private communication
Kremer K, Baumgärtner A and Binder K 1982 J. Phys. A: Math. Gen. 152879
Kremer K and Lyklema J W 1985 Phys. Rev. Lett. 54267
Lyklema J W and Kremer K 1984a J. Phys. A: Math. Gen. 17 L691
_1984b Proc. Int. Topical Conf. on Kinetics of Aggregation and Gelation (University of Georgia, Athens, USA) 1984 (Amsterdam: North-Holland)

- 1985 Phys. Rev. B 313182

Majid J, Jan N, Coniglio A and Stanley H E 1984 Phys. Rev. Lett. 521257
Nakanishi H and Family F 1984 J. Phys. A: Math. Gen. 17427
Pearce C J 1978 Adt. Phys. 2789
Privman V 1984 Physica A 123428
Stella A L, de Queiroz S L A, Duxbury P M and Stinchcombe R B 1984 J. Phys. A: Math. Gen. 171903
Voss R F 1984 J. Phys. A: Math. Gen. 17 L373
Weinrib A and Trugman S 1985 Phys. Rev. B 312993
Witten T A and Sander L M 1983 Phys. Rev. B 275686


[^0]:    † Address until 30 August 1985: Exxon Research, Annandale, NJ 08801, USA; address thereafter: Institut für Physik, Johannes-Gutenberg-Universität Mainz, D-6500 Mainz, Postfach 3980, FRG.

